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ABSTRACT

We present a new approach, kernel regression, to deterinatempetric redshifts for 399,929
galaxies in the Fifth Data Release of the Sloan Digital Sky&u(SDSS). In our case, kernel
regression is a weighted average of spectral redshifteaféighbors for a query point, where
higher weights are associated with points that are clogbetquery point. One important de-
sign decision when using kernel regression is the choickeobaindwidth. We apply 10-fold
cross-validation to choose the optimal bandwidth, whicblitained as the cross-validation
error approaches the minimum. The experiments show thaiptimal bandwidth is different
for diverse input patterns, the least rms error of photoimetdshift estimation arrives at 0.019
using color+eClass as the inputs, the less rms error amtu6t820 using:griz+eClass as
the inputs. Here eClass is a galaxy spectra type. Then thee fihs scatter is 0.021 with
color+r as the inputs. As a result, except the parameters (e.g. tndgsiand colors), eClass
is a valid parameter to predict photometric redshifts. Meex the results also suggest that
the accuracy of estimating photometric redshifts is impobwhen the sample is divided into
early-type galaxies and late-type ones, especially fdydgpe ones, the rms scatter amounts
to 0.016 with color+eClass as the inputs. In addition, keregression achieves high accu-
racy to predict the photometric eClass,{s = 0.034) using colorr as the input pattern. For
kernel regression, the more parameters considered, theamycof photometric redshifts is
not always higher, but satisfactory only when appropri@@ameters are chosen. Kernel re-
gression is comprehensible and accurate regression moidis data. Experiments reveal
the superiority of kernel regression when compared to athggirical training approaches.
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1 INTRODUCTION

In general, the redshifts of galaxy are measured specipasulty.
In order to achieve high signal-to-noise spectra, longgiratgon
time is required. For those large and faint sets of galakiesgver,
spectra of galaxies are not easy or impractical to obtaithérab-
sence of spectroscopic data, redshifts of galaxies maytimeated
using medium- or broadband photometry, which may be thoofyht
as very low-resolution spectroscopy. Though such photeoretd-
shifts are necessarily less accurate than true spectricgeaighifts,
they nonetheless are sufficient to determine the formatioineso-
lution properties of large number of galaxies rather thastudy ac-
curate redshift of individual galaxy (Gwyn 1990). Photoriteted-
shifts may be obtained less expensively and for much lamyer s
ples than is possible with spectroscopy. In the ninetiestqrhetric
redshifts is rapidly becoming a crucial tool in mainstreamerva-
tional cosmology. To date, some photometric redshift oggahave
been used to deal with several scientific issues, e.g. tHet@mof
the luminosity density and the number of massive galaxiesdy
assembled at early epochs (Fontana et al. 2000), the evoloti
galaxy size (Poli et al. 1999; Giallongo et al. 2000), thesdwet-

nation of cosmological baryonic and matter densities (Blek al.
2007), and the clustering of luminous red galaxies in SDS&)im
ing data (Padmanabhan et al. 2007) .

Techniques for deriving photometric redshifts were pioade
by Baum (1962). Subsequent implementations of these becdie t
nigues have been made by Couch et al. (1983) and Koo (1985).
Photometric redshift techniques have been divided intolivead
categories: template matching method and empirical trgisiet
method. There are advantages and disadvantages to eaochappr
The former approach relies on fitting model galaxy spectral e
ergy distributions (SEDs) to the photometric data, wheeentiod-
els span a range of expected galaxy redshifts and specpas ty
(e.g., Sawicki, Lin & Yee 1997). A library of template spec{e.g.
Bruzual & Charlot 1993; Coleman, Wu & Weedman 1980) are em-
ployed. Ax? fit is used to obtain the optimal template pairs for each
galaxy. The various techniques in this kind is differennirtheir
choice of template SED’s and in the procedure for fitting. plte
SED’s may come from population synthesis models (eg. Bi&ua
Charlot 1993) or from spectra of real objects (eg. Colemam &V
Weedman 1980). Both kinds of templates have their weakaesse
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template SED'’s from population synthesis models may irelurak
realistic combinations of parameters or exclude known<abee
real galaxy templates are almost always derived from dataight
low redshift galaxies, and may be poor representationseohiph
redshift galaxy population (Wadadekar 2005).

The latter approach depends on using an existing spectro-

scopic redshift sample as a training set to derive photomeed-
shifts as the function of photometric data. Some typicahing-set
methods employed include: artificial neural networks (ANSsl-
ister & Lahav 2004; Firth, Lahav & Somerville 2003; Vanzedizal.
2004; Li et al. 2006), support vector machines (SVMs, Wakade
2005), ensemble learning and Gaussian process regre$§mn (
& Srivastava 2006) and linear and non-linear polynomialnfitt
(Brunner et al. 1997; Wang, Bahcall, & Turner 1998; Budiaet
al. 2005; Hsieh et al. 2005; Connolly et al. 1995). Such tephes
have strengthes that they are automatically constructéaeoyrop-
erties of galaxies in the real universe and require no atitias-
sumptions about their formation and evolution. However tfor
empirical best fit method, such as linear and non-linearmmtyial
fitting, it is difficult to extrapolate to objects fainter thahe spec-
troscopic limit. For the ANN approach, its optimal architee is
not easy to obtain, moreover and it is easy to get stuck i fota
ima during training stage. Unlike ANNs, SVMs do not need ckoi
of architecture before training, but the optimal parantetertheir
models are obtained with much effort.

Another interpolative training-set methods are instaoased
learning techniques, applied to predict photometric ritisfeg.
Csabai et al. 2003; Ball et al. 2007). Instance-based legmieth-
ods base their predictions directly on (training) data tieest been
stored in the memory. Usually they store all the trainingadatthe
memory during the learning phase, and defer all the es$entia
putation until the prediction phase. Examples of such tegtes
are k-nearest neighbor, kernel regression and locally weightéed
gression. If setting: to n (the number of data points) and optimiz-
ing weights by gradient desceiitnearest neighbor turns into ker-
nel regression, while locally weighted regression gemnegdlker-
nel regression, not just obtains local average values. iergd ir-
relevant features are often Kkillers for instance-basedoguhes.
But ANNs can be trained directly on problems with hundreds or
thousands of inputs. Instance-based learning methods tclnvfi
dimensional, very complex functions very accurately wiiiNNs
require considerable tweaking to do this. When adding nela, da
training is almost free for instance-based learning methddt
ANNs and SVMs need retraining the data.

We put forward a kernel regression method to estimate pho-
tometric redshifts. This paper is organized as follows. éatfn 2
we describe the data we use. A brief overview of kernel resjpas
is addressed in Section 3. Section 4 illustrates the reantisdis-
cussion, and the conclusion is presented in Section 5.

2 DATA

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is thestno
ambitious astronomical survey ever undertaken. When ogtexqb|

it will provide detailed optical images covering more thaguarter

of the sky, and a 3-dimensional map of about a million gakagied
quasars, with a dedicated 2.5-meter telescope located anh&p
Point, New Mexico. The first stage of SDSS is already complete
(with DR5). It has imaged 8,000 square degrees in five baségas

(u, g,r, 1, z) and measured spectra of more than 675,000 galaxies,

90,000 quasars and 185,000 stars. In its second stage, SMSS w

carry out three new surveys in different research areab, asithe
nature of the universe, the origin of galaxies and quasadstizan
formation and evolution of the Milky Way. In order to consttu
a representative sample set, we collected all objectshgatishe
follow criteria from SDSS Data Release 5 (Adelman-McCaghy
al. 2007). All following mentioned magnitudes are magnésidor-
rected by Galaxy extinction using the dust maps of Schlegeal.e
1998. After these restrictions that the spectroscopichiéidsonfi-
dence must be greater than or equal to 0.95, and the redsigt fl
should be zero, we obtained a sample containing 399,928igala
The photometry properties discussed below are available in
all five SDSS bandpassesdiz), however the-bandpass values
for these quantities are usually applied for theand result gen-
erally has the lowest error and gives more consistent efdlay
& Srivastava 2006). The Petrosian 50% (90%) radius is theisad
where 50% (90%) of the flux of the object contributes0 is Pet-
rosian 50% radius in band,r90 is Petrosian 90% radius inband.
The ratio of these quantities is called Petrosian concéntrandex
¢=r90/r50, which is an indicator of the galaxy type: early-type
galaxy withc > 2.5 and late-type galaxy with < 2.5 (Strateva
et al. 2001). The Petrosian Radii are also utilized togetbitr a
measure of the profile type from the SDSS photometric pipelin
reduction named fracDeV. fracDeV results from a linear cioab
tion of the best exponential and de Vaucouleus profiles tieafia
to the image in each band. fracDeV is a floating point number be
tween zero and 1. fracDeV is closely related to galaxy typiesh
is 1 for a pure de Vaucouleurs profile typical of early-typéagees
and zero for a pure exponential profile typical of late-typagies.
eClass is a spectroscopic parameter giving the spectmlfftgm a
principal component analysis, which is a continuous vadumging
from about -0.5 (early-type galaxies) to 1 (late-type giax

3 KERNEL REGRESSION
3.1 Overview of thealgorithm

Kernel regression (Watson, 1964; Nadaraya, 1964) belangfset
family of instance-based learning algorithms, which siyrgtiore
some or all of the training examples and “delay learning”piik-
diction time. Given a query poiq, a prediction is obtained using
the training samples that are “most similar” 2g. Similarity is
measured by means of a distance metric defined in the hypeesp
of V predictor variables. Kernel regressors obtain the priedidor

a query poiniq, by a weighted average of thyevalues of its neigh-
bors. The weight of each neighbor is calculated by a funatidts
distance taxq (called the kernel function). These kernel functions
give more weight to neighbors that are nearex$o The notion of
neighborhood (or bandwidth) is defined in terms of distamoenf
Xq. The prediction for query pointq is obtained by

N
> K (2 Xy,

=1

N
D (x;,x,
3 K(=)

Yq = (N

where D(.) is the distance function between two instancks;)

is a kernel functionf is a bandwidth value{x;, y;) are training
samplesx; andxgq are vectorsjV is the number of datapoints used
in the model. In this paper, we use Euclidian distance andSan
kernel functionx; is the feature for each training sample,is the
spectroscopic redshift for each training set sampjés the redshift
of each query sample.
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3.2 Bandwidth determination

One important design decision when using kernel regressithre
choice of the bandwidth. The largeth results in the flatter weight
function curve, which indicates that many points of tragnset
contribute quite evenly to the regression. As théends to infin-
ity the predictions approach the global average of all gointhe
database. If thé is very small, only closely neighboring datapoints
make a significant contribution. If the data is relativelyisypwe
expect to obtain smaller prediction errors with a relativelrger
h. If the data is noise free, then a smallwill avoid smearing
away fine details in the function. There exists mature algors
for choosing the bandwidth for kernel regression that minéra
statistical measure of the difference between the true riyidg
distribution and the estimated distribution. Usually baitih se-
lection in regression is done by cross-validation (CV) @ plenal-
ized residual sum of squares.

Cross-validation is the statistical method of dividing enpée
of data into subsets such that the analysis is initiallygrened on a
single subset, while the other subset(s) are retained fmesjuent
use in confirming and validating the initial analysig-fold cross-
validation is one important cross-validation method. Tatads di-
vided intoM subsets of (approximately) equal size. Each time, one
of the M subsets is used as the test set and the dthetl subsets
are put together to form a training set. Cross-validatiafesigned
to choose the bandwidth by minimizing the cross-validasoare
CV(h) defined by
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wherey;; is the spectroscopic redshift for each test set sargple,
is the predicted photometric redshift of each test samiglés the
number of objects in each subsgt£ 1,2, ..., M), M is the num-
ber of subsets for cross-validation. In general, kthevalues are
identical. Here we adopt 10-fold cross-validation for taadwidth
choice, i.e.M=10, firstly divide the sample of 399,929 galaxies
into 10 subsets, then 9 subsets of 10 subsets are takenrasgdrai
set and the rest subset as testing set for ten times.

We adopt the sample described in Section 2, applying four
color indexes¢ — g, g — v, r — i ands — z) and spectroscopic
redshifts as input parameters. Then we implement kernetgsmpn
on this sample and compute the 10-fold cross-validatedesioor
different bandwidths in Table 1. As shown by Table 1, the sros
validated score CV{) reaches the minimurf.559 x 10~* when
his equal to 0.02. Therefore, 0.02 has been assigned to tmadpt
fixed bandwidth for the sample in this case.

3.3 Input pattern selection

In this work, we choose the input parameters using the Akiaike
formation Criterion (AIC). AIC (Akaike 1974) is a measuretbé
goodness of fit of an estimated statistical model. The AlChot
ology attempts to find the model that best explains the data avi
minimum of free parameters. In the general case, AIC is

AIC = —21In Liax + 2k ®3)

wherel ..« IS the maximized likelihood function, arkds the num-
ber of free parameters in the model.

3

Table 1. Bandwidth determination using the cross-validated (CVihoe

h CV(h)(x10~%)
0.010 5.668
0.015 5.574
0.020 5.559
0.025 5.620
0.030 5.725
0.035 5.831
0.040 5.973
0.045 6.112
0.050 6.264
0.055 6.426
0.060 6.601
0.065 6.794
0.070 6.990
0.075 7.195
0.080 7.410
0.085 7.638
0.090 7.877

The purpose of model selection is to identify a model that bes
fits the available data set. A model is better than anothereinod
if it has a smaller AIC value. When a model approach the lowest
values of AIC, the model is regarded as the best model. Severa
recent works in astrophysics have used AIC for model selBcti
(e.g. Liddle 2004, 2007). In Section 4.1, AIC will be used ¢test
the optimal input pattern.

4 RESULTSAND DISCUSSION
41 RESULTS

One advantage of the empirical training set approach toophet-
ric redshift estimation is that additional parameters carebsily
incorporated. More parameters (erg0, 90, fracDeV etc.) may
be taken as inputs. In order to study which parameters irdkien
the accuracy of predicting photometric redshifts, we prifferent
input patterns to estimate photometric redshifts. Aceaydb the
bandwidth choice criterion described in Section 3.2, we at®
the 10-fold cross-validation scores and get the optimatiaaith
values corresponding to different situations, as shownaiplél 2.
In order to determine which input pattern is best, we use tlg A
criterion to investigate this problem.

When implementing kernel regression to predict photoroetri
redshifts, 260,000 galaxies are randomly regarded asrigpset
and the rest are as test set. The rms deviations, optimainridttd
and AIC for different input patterns are listed in Table 2blEa2
shows that rms error is different for each input pattern evliie
corresponding optimal bandwidth and AIC are different, fdev-
ertheless AIC has the same trend as rms error, i.e. AIC isepea
with the increase of rms error and decreases with the deafimas
error. When AIC approaches minimum, the input pattern isizbn
ered as the best input pattern, vice versa. As a result, stergit
pattern is four colorsy — g, g — r, r — i, ¢ — z) and eClass when
rms error amounts to 0.0189. The next better input pattefives
magnitudes and eClass when rms error is 0.0198. Then the good
input pattern is four colors andmagnitude when the rms scatter is
0.0206. The result with only five magnitudes is better tha with
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Table 2. rms errors, optimal bandwidths and AIC for different inpatgm-
eters

Input Parametefs Orms h AIC
ugriz 0.0215 0.025 64.259
ugriz + r50 4+ 790 0.0247 0.070 84.282
ugriz—+fracDeV.r 0.0223 0.035 69.242
ugriz+eclass 0.0198 0.025 54.548
color 0.0220 0.020 67.558
color+r 0.0206 0.030 58.933
color+r + ¢ 0.0206 0.035 58.656
color+r + 504790 0.0226 0.050 70.206
color+fracDe\.r 0.0220 0.025 67.149
color+ugriz 0.0210 0.040 60.961
color+eclass 0.0189 0.025 49.503

NOTE.—+50 is Petrosian 50% radius in band,~90 is Petrosian 90%
radius inr band, fracDeVr is fracDeV inr band, color is the color indexes,
ieeu—g,g—r,r—1,4— z andc = r90/r50.

only four colors but worse than that with four colors anthagni-
tude. For five magnitudes as inputs, the performance of kegne
gression decreases when addit3g andr90 or fracDe\.r except
eClass. Similarly, for four colors or four colors andnagnitude
as inputs, the performance becomes worse when also cangjider
r50 andr90 or fracDe\.r. The performance adding the Petrosian
concentration index hasn’t improved compared with only four
colors andr magnitude as inputs. The result with four colors and
five magnitudes is superior to that only with colors or onlythwi
magnitudes, however it is worse than that with four color and
magnitude. Therefore when applying kernel regression ¢dlipt
photometric redshifts, we find the parameters except madgst
and color indexes, such as0, 90, fracDeV.r and¢, contribute
little information, however eClass is important and effext

Figure 1 shows the comparison of the known spectroscopic
redshift with the calculated photometric redshift from thst data
using kernel regression with the input pattern of color-s8l Con-
sidering color+ as the inputs, the fractions of predicted photomet-
ric redshifts exceeding=30 and 40 error bar with the loss of
estimation are 2.10% and 1.03%, respectively. With colGlass
as the inputs, the fractions including the loss occupy 2.5
1.28%, separately. The loss of estimation refers to thetpaihose
photometric redshifts can not be measured due to theimtistto
neighbors beyond the optimal window width of kernel regia@ss

Although eClass is not strictly photometric, it is applitzato
use this parameter to estimate photometric redshifts wiadaxg
ies have low S/N spectra, or they have weak absorbtion or-emis
sion lines. Moreover it is helpful for the statistical studlya large
galaxy sample without detailed spectra information. Initalal
eClass may be estimated with color indexes or magnitudstdjle
following. The parameter eClass is a continuous paramateg-r
ing from approximately -0.5 (early type galaxies) to 1 (Iatpe
galaxies), indicating spectral type in the SDSS spectisoat-
alog. We use the same sample to estimate eClass rather than re
shifts with kernel regression. Based on the result as listebha-
ble 2, we choose the best input pattern of coloexcept the pat-
terns with eClass. The rms scatteris,s = 0.0337, as shown in
Figure 3. Other researchers have done similar works, fanpia
Wadadekar (2005) utilized support vector machines (SVbipyé-
dict the photometric eClass using 10,000 objects from SD&& D
Release 2 and the rms scatter of eClass estimatign = 0.057;

r.m.s =0.0189

0.5

Photometric redshifts

0.2 0.3 0.4 0.5

Spectroscopic redshifts
Figure 1. Comparison between spectroscopic and photometric resishif

260,000 galaxies are regarded as training set. 139,92%ieglare as test
set (plotted). The input parameters are g, g —r, 7 — 7,7 — z and eClass.

rm.s = 0.0337

0.6

0.4

0.2

Photometric eClass

-02 00 02 04 06

Spectroscopic eClass

08 1.C

Figure 2. Spectroscopic eClass vs. calculated photometric eClass fo
139,929 galaxies from the SDSS DR5 with kernel regressidw ifiput
parameters are — g, g — r, 7 — 1,7 — z andr.

Collister & Lahav (2004) obtaineé.s = 0.052 by artificial neu-
ral networks (ANNS) for the eClass estimation with 64,17feots
from SDSS Data Release 1.

From Table 2, we can draw a conclusion that spectral type is
an important parameter for determining photometric retshin
order to further study how the spectral type influences toaracy
of measuring photometric redshifts, the sample is diviaad two
parts according to the criterion that early-type galaxy is- 2.5
and late-type galaxy is < 2.5 (Strateva et al. 2001). Thus 251,794
early-type galaxies and 148,135 late-type galaxies arairodd in
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Table 3. Comparison of the accuracy for the separated sample witlidha
the original sample

Input Parameters o AICE oL . AICE  omiT gy

color 0.0197 38.52 0.0247 35.79 0.0215 0.0220
color+r 0.0186 36.96 0.0230 33.86 0.0204 0.0206
color+eClass 0.0164 30.33 0.0222 31.94 0.0187 0.0189

NOTE.—ﬂFmS is orms for early-type galaxiesy . is orms for late-type
galaxies;o™* for the whole sample; AI€ and AICL are AIC values for

rms

early-type and late-type galaxies, respectively,s is taken from Table 2.

our sample. Then we implement kernel regression on the ttgo se
separately. When taking — g, g — r, » — 4, ¢ — z as inputs and
h=0.02, the rms dispersion of photometric redshifts,iss=0.0197

for early-type galaxies ang.ms=0.0247 for late-type galaxies, the
rms scatter £7:%) for the mixed sample adds up to 0.0215. The
computation o742 refers to Equation (4).

1 N1 N2
oy A R — E _ 5By 4 L _5L)2) (4
NIV (;(% 9F) ;(% 7F)2) (4

wherey? andy’ are the spectroscopic redshift for early-type and
late-type galaxies, respectively” andgF are the predicted photo-
metric redshift of early-type and late-type galaxies, saifgdy. N1

is the number of early-type galaxie¥: is the number of late-type
galaxies.

When takingu—g, g—r, r—1,i—z andr as inputs an@=0.03,
the rms error of photometric redshiftsis,s=0.0186 for early-type
galaxies andr,,ms=0.0230 for late-type galaxies, the mixed rms er-
ror is 0.0204. Considering four color indexes and eClass@sts
andh=0.025, the rms scatter is.ms=0.0164 for early-type galax-
ies ando,ms=0.0222 for late-type galaxies, the mixed rms error
amounts to 0.0187. The rms scatter with two parts of sampie ou
performs that without separating the sample, as shown iteTab
For early-type galaxies, the rms deviation of photometeigshift
measurement is very satisfactory. Table 3 further indictitat the
parameter of eClass related to spectral type is robust gndisant
to determine the photometric redshifts and it is also héMafum-
prove the accuracy of photometric redshifts with the sejmaraf
galaxies into early-type ones and late-type ones. In addithIC
values approach minimum simultaneously with color+eCéasthe
inputs for early-type and late-type galaxies. Therefareur case,
color+eClass is the best input pattern to determine phdtaewed-
shifts while color+ is the next better one.

4.2 DISCUSSION

At present there have been many works on the algorithms &v-det
mining photometric redshifts. Each method has its pros amg.c

For ANNs, we need to make a decision about the optimal network

architecture. More complex network architectures we haeeem
accurate result. ANNs allow a closer fit to the data, but af® su
ject to the danger of overfitting. In addition, adding layersodes
to the network, training time will increase remarkably (\&ddkar
2005). Comparing to ANNs, SVMs simplifies the training prege
only need to choose the kernel function rather than the @athie.
Even simple Gaussian function can give a good performanoe- H
ever, the adjustments of lots of parameters require prionmedge.
Correlation between parameters makes the regulating gsaaere
complicated. Although linear or non-linear polynomial regsion
is easy to communicate with astronomers, the systemati@a-dev
tion is large (Brunner et al. 1997; Wang, Bahcall & Turner 899

Table 4. Various photometric redshift approaches and accuracies

Method Name Orms Data set Input parameters
cww! 0.0666 SDSS-EDR ugriz
Bruzual-Charlot 0.0552 SDSS-EDR ugriz
Interpolated 0.0451 SDSS-EDR ugriz
Polynomiat 0.0318 SDSS-EDR ugriz
Kd-treet 0.0254 SDSS-EDR ugriz
Class®@ 0.0340 SDSS-DR2 ugriz
SVMs? 0.027 SDSS-DR2 ugriz
0.0230 SDSS-DR2 ugriz + r50 + r90
ANNs? 0.0229 SDSS-DR1 ugriz
PolynomiaP 0.025  SDSS-DR1,GALEX ugriz + nuv
Kernel Regression  0.0215 SDSS-DR5 ugriz
0.0206 SDSS-DR5 color+
0.0189 SDSS-DR5 color+eclass

NOTE.—- SDSS-EDR = Early Data Release (Stoughton et al. 002
SDSS-DR1 = Data Release 1 (Abazajian et al. 2003), SDSS-DRata
Release 2 (Abazajian et al. 2004), SDSS-DR5 = Data Releasdeinfan-
McCarthy et al. 2007)r50 is Petrosian 50% radius inband,r90 is Pet-
rosian 90% radius im band, fracDeV\/r is fracDeV inr band, color is the
color indexes, i.ew — g, g — 7,7 — 4,1 — 2.

(1) Csabai et al. 2003; (2) Suchkov, Hanisch & Margonet 2005;

(3) Wadadekar 2005; (4) Collister & Lahav 2004; (5) Budia\et al. 2005.

Budawiri et al. 2005; Hsieh et al. 2005; Connolly et al. 1995). In
recent years, a combination of HyperZ with the Bayesian makg
ization was proposed by Benitez (2000). The dispersion ofgh
metric redshifts using this combination technique wasigigantly
improved. The results using Bayesian technique have beea am
liorated, nevertheless, the application of this methodicainduce
unrealistic effects in some studies. Therefore, this agpgraan be
an alternative option when one is dealing with no spectri.da
With large and deep photometric surveys are carried out, it
seems that kernel regression will offer some significanaathges
over other approaches, as shown in Table 4. The performance o
kernel regression to predict photometric redshifts is carable
to ANNs and SVMs, superior to Kd-tree, ClassX and polynomial
regression, and more preferable than CWW and Bruzual-Gharl
(Wadadekar 2005; Collister & Lahav, 2004; Csabai et al. 2868
their Tables 1). A major problem for empirical training-se¢thod
is the difficulty in extrapolating to regions where the inparam-
eters are not well represented by the training data. But éoned
regression, even though a few high-redshift galaxies £xisthe
sample, one can appropriately adjust bandwidth to obtaiohmu
more accurate redshifts. In addition, compared to otheritrg-set
methods, kernel regression has another advantage thatdnie
retraining when a new query point appears.

5 CONCLUSION

We have presented an instance-based learning method keaitesl
regression to predict photometric redshifts of galaxigh thie data
from SDSS broadband photometry. Important work in kernel re
gression is how to determine the bandwidth. We use 10-fadser
validation to choose the optimal bandwidth. Our experirmshbw
that the optimal bandwidth is different for different inguarame-
ters, the color+eClass pattern is the best when the rmsarpro-
tometric redshift estimation adds up to 0.0189,dpeiz+eClass is
better when the rms error is 0.0198. Except these two situstihe
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color+r pattern is the best when the rms scatter is 0.0206. The pa- of Portsmouth, Princeton University, the United Statesa\&b-

rameters, such a$0, 790, fracDeV.r andc, contribute little infor-
mation, however eClass shows much importance. Moreoveeker
regression achieves high accuracy to predict photometdshifts
for early-type galaxies and the photometric eClass. For ANNe
more parameters considered, the accuracy of photometistifes
is higher (Way & Srivastava 2006; Li et al. 2006). While forke
nel regression and SVMs, the accuracy is satisfactory ofignwy
appropriate parameters are chosen. To our satisfactionelkes-
gression is able to measure photometric redshifts of gadeavec-
curately. This is helpful to construct the sample of galsxa the
study of cosmology with minimal contamination from objeatse-
riously incorrect redshifts. Similarly kernel regressioay be ap-
plied to predict photometric redshifts of quasars.

Kernel regression has a number of flexibilities. It is po&sib
to make different queries with not only different kernel wisih,
but also different distance metrics, with subsets of aiteb ig-
nored, or with some other distance metrics such as Manhdigan
tance, Canberra distance. It is also possible to apply tine sach-
nigue with different kernel functions for classificatiorsiead of
regression. Unlike the traditional training methods, igstbmerit
is the ability to make predictions with different paramstesithout
needing a retraining phase, moreover it doesn’t seriouspedd
on the size of sample. Nevertheless it has the obvious disadv
tage of instance-based learning that is a significant coatipugl
cost on large data sets. In the future work we will exploréed#nt
functions or other kinds of distance metric for kernel regien on
the regression problems. In addition, we may use multitegoi

instance-based learning as suggested by Deng & Moore (1995)

This method succeeds in reducing the cost of instance-lbeaed
ing, moreover it has two advantages: flexibility to work thgbout
the local/global data; the ability to make predictions wdtfierent
parameters without needing a retraining phase.
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